Studies toward the synthesis of dienophile unit of methyl sartotuoate

CHEN, Xin-Chao(陈新潮) FAN, Chun-Feng(范春凤) XU, Xing-Xiang*(许杏祥)
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

The preparation of C3-C14 fragment of the dienophile unit of methyl sartotuoate is described. The key steps included Roush reaction and CuI catalyzed epoxy-opening reaction of i-PrMg-Br.

Keywords Methyl sartotuoate, Roush reaction, Sharpless AE reaction, synthesis

Methyl sartotuoate (1) is one of the member of the

biscembranoids (tetraterpenoids) isolated from soft coral Sarcophyton tortuosum Tixier-Durivault collected in South China Sea by Su and co-workers. 1 It was hypothesized that 1 originated from dienophile unit 2 and diene unit 3 (Fig. 1) although 2 and 3 have not been isolated yet. 1 Because dienophile 2 is also a key structural moiety of methyl isosartotuoate, 2 the preparation of 2 was first studied.

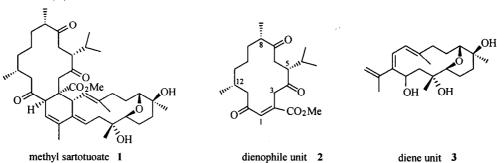


Fig. 1 Structures of 1 and related units.

According to the intramolecular Wittig-Horner macrocyclization strategy, a retrosynthetic analysis of 2 led to the key fragment 4, in which three stereogenic centers have been involved. Continuing the analysis,

1,5-chiral dimethyl section 5 and isopropyl section 6 with sulfone could be the proper intermediates. Here we wish to communicate our results (Scheme 1).

Scheme 1

Received April 30, 2000; accepted July 3, 2000.

Project supported by Chinese Academy of Sciences and the National Natural Science Foundation of China (No. 29572079).

The synthesis of 5 started from (R)-(+)-citronellol $(>95\% \ ee)$ (Scheme 2), which was transformed to aldehyde 7 according to the reported procedure.³ Then 7 reacted with Roush reagent [(+)-diisopropyl tartrated modified (Z)-crotylboronate $]^4$ to introduce the chiral methyl group. The d.e. value of 8 was determined to be 90% by analysis of the MTPA esters.⁵ In order to re-

move the secondary hydroxyl group, 8 was sulfonated to give 9 in 85% yield. Exposure of 9 to ozone and reduction with NaBH₄ and LiAlH₄ afforded alcohol 10 in 74% yield. The spectroscopic data of 10 were in agreement with the reported data.⁶ Finally, protection, deprotection and functional transformation of 10 gave the 1,5-chiral dimethyl section 5⁷ in 60% overall yield from 10.

Scheme 2

Reagents and conditions: a) (R, R)-(Z)-I, 4Å MS, toluene, -78° C, 13 h, 83%; b) MsCl, Py, CH_2Cl_2 , -5° C \rightarrow 0°C, overnight, 85%; c) i. O_3 , CH_2Cl_2 , -78° C; ii. NaBH₄, CH_3OH , -78° C \rightarrow rt., overnight, 86%; d) LiAlH₄, THF, reflux, 5 h, 86%; e) i. $CH_2 = CHOEt$, PPTS, CH_2Cl_2 , rt., 93%; ii. 10% Pd-C, EtOAc, 70°C, 95%; iii. Dess-Martin periodinane, CH_2Cl_2 , 0°C, 15 min, 95%; f) i. Ph_3PCH_3I , t-BuOK, toluene, r.t., 4 h, then 11, overnight, 86%; ii. CH_3OH , PPTS, rt., 94%; iii. Dess-Martin Periodinane, CH_2Cl_2 , 0°C, 90%.

Synthesis of 6 was shown in Scheme 3. 2-Butyne-1,4-diol was first converted to 13.8 Sharpless epoxidation⁹ of 13 was catalyzed with (-)-diisopropyl tartrate to give 14. Because of the symmetry of 14, the regiochemical preference for epoxy-opening was inconsequential. Copper(I) catalyzed reaction of isopropylmagnesium bromide with epoxide 14 was regio- and stereo-selective, and gave 1, 3-diol 15 as the only product. Neither the corresponding 1, 2-diol nor the product resulting from a Payne rearrangement of the hydroxyl epoxide was detected. 15 was converted into the acetonide 16, and its ¹H NMR spectrum¹⁰ indicated the epoxide opening with the inversion of configuration at C-2. Reductive cleavage of benzyl group in 16, and then transketalization of the resultant product in acetone provided the five-membered ring acetonide 17 as a 10:1 equilibrium mixture with six-membered ring acetonide. 11 Finally, compound 17 was converted into sulfone 6 via bromide (Scheme

 $3).^{12}$

With fragments 5 and 6 in hand, our attention was focused on the connection of the fragments. The connection was achieved by treatment of 6 with 1 eq. n-BuLi in THF at $-40\,^{\circ}\mathrm{C}$ follwed by adding 5 at $-78\,^{\circ}\mathrm{C}$. The product 18 was obtained as a mixture of diastereoisomers in 85% yield. Reductive removals of the sulfonyl group in 18 with Li/NH₃ and aluminum amalgam were impracticable due to the low yield. At last, 18 was oxidized to ketosulfone 19, and then removal of sulfonyl group with $\mathrm{SmI}_2/\mathrm{CH}_3\mathrm{OH}$ in THF at $-78\,^{\circ}\mathrm{C}^{13}$ followed by reducing the ketone with NaBH₄ gave 4^{14} in 85% yield (Scheme 4).

In summary, a key intermediate of the dienophile unit of methyl sartotuoate (1) was prepared in an efficient way. The total synthesis of methyl sartotuoate is in progress in our laboratory.

Scheme 3

Reagents and conditions: a) 10% (-)-DIPT, 12% $Ti(OiPr)_4$, 4Å MS, CH_2Cl_2 , -30°C, overnight, 78%; b) 0.1 eq. CuI, 4 eq. iPrMgBr , THF, -40°C \rightarrow -30°C, 8 h, 70%; c) 2,2-dimethoxylpropane, acetone, PTS, rt., overnight, 94%; d) i. Na/NH_3 , -78°C, 92%; ii. acetone, PTS, rt., overnight, 90%; e) i. CBr_4 , Ph_3P , CH_2Cl_2 , 0°C, 3 h, 79%; ii. $PhSO_2Na$, DMF, 50°C, 4.5 h, 70%.

Scheme 4

Reagents and conditions: a) i. 1.1 eq. 5, THF, -40°C , then 1.0 eq. n-BuLi, 30 min; ii. 1 eq. 6, -78°C , 1 h, 85%; b) Dess-Martin Periodinane, CH₂Cl₂, 0°C , 85%; c) i. SmI₂/CH₃OH, THF, -78°C , 10 min; ii. NaBH₄, CH₃OH, $-78^{\circ}\text{C} \rightarrow 0^{\circ}\text{C}$, 85%.

References and notes

- Su, J.Y.; Long, K.H.; Peng, T.S.; Zheng, Q.T.;
 Lin, X.Y., Acta Chem. Sin., 43, 796(1985).
- Su, J. Y.; Long, K. H.; Peng, T. S.; He, C. H.; Clardy, J., J. Am. Chem. Soc., 108, 177(1986).
- Overman, L.E.; Jacobsen, E.J., J. Am. Chem. Soc., 104, 7225(1982).
- 4. a) Roush, W. R.; Walts, A. E. L., J. Am. Chem. Soc., 107, 8186(1985).
 b) Roush, W. R.; Halterman, R. L., J. Am. Chem. Soc., 108, 294(1986).
- Dale, J. A.; Dull, D. L.; Mosher, H. S., J. Org. Chem., 34, 2543(1969).
- Eguchi, T.; Arakawa, K.; Terachi, T.; Kakinuma, K.,
 J. Org. Chem., 62, 1924(1997).

- 7. Data of 5: $[\alpha]_D^{20} = 9.61^{\circ}$ (c 0.95, CHCl₃). δ_H (300 MHz, CDCl₃): 0.90(d, J = 6.5 Hz, 3H), 1.13(d, J = 7.0 Hz, 3H), 1.23—1.55(m, 7H), 1.90—2.15(m, 2H), 2.20—2.53(m, 1H), 4.92, 5.08(2bs, 2H), 5.59—6.03(m, 1H), 9.64(bs, 1H). EIMS m/z: 167(M⁺ 1), 153, 141, 139, 125, 55.
- 8. Schloss, J.V.; Hartman, F.C., Bioorg. Chem., 9, 217 (1980).
- Gao, Y.; Hanson, R.M.; Klunder, J.M.; Ko, S.Y.;
 Masamune, H.; Sharpless, K. B., J. Am. Chem. Soc., 109, 5765(1987).
- 10. Data of **16**: $\delta_{\rm H}(300~{\rm MHz},~{\rm CDCl_3})$: 0.70 (d, $J=4.6~{\rm Hz},~3{\rm H})$, 0.72(d, $J=4.6~{\rm Hz},~3{\rm H})$, 1.34(s, 3H), 1.52(s, 3H), 1.62—1.70(m, 1H), 1.73—1.83(m, 1H), 3.49 (dd, $J=10.6,~3.4~{\rm Hz},~1{\rm H})$, 3.54(dd, $J=10.6,~4.5~{\rm Hz},~1{\rm H})$, 3.62(dd, $J=11.6,~9.3~{\rm Hz},~1{\rm H})$, 3.74(dd,

- J = 11.6, 5.3 Hz, 1H), 3.94(ddd, J = 10.3, 4.3, 3.6 Hz, 1H), 4.47(d, J = 12.3 Hz, 1H), 4.42(d, J = 12.3 Hz, 1H), 7.06—7.33(m, 5H).
- Meyers, A. I.; Lauson, J. P., Tetrahedron Lett., 23, 4883(1982).
- 12. a) Astles, P. C.; Thomas, E. J., J. Chem. Soc., Perkin Trans. 1, 845(1997). b) Data of Compound 6: $[\alpha]_D^{20} = 5.5^{\circ}$ (c 3.4, CHCl₃). $\delta_H(300 \text{ MHz}, C_6D_6)$: 0.93(d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 1.28(s, 6H), 1.93—1.95(m, 1H), 2.04—2.08(m, 1H), 3.07(dd, J = 15.0, 6.7 Hz, 1H), 3.34(dd, J = 15.0, 3.0 Hz, 1H), 3.59(dd, J = 8.5, 7.4 Hz, 1H), 3.99(dd, J = 8.5, 6.6 Hz, 1H), 4.14—4.19(m, 1H), 7.55—7.66(m, 3H),
- 7.92—7.95(m, 2H). EIMS m/z: 313(M⁺ + 1), 297, 255, 171, 143, 101, 95, 77; HRMS Calcd. For $C_{16}H_{24}$ - O_4S : 312.1395, Found. 312.1424.
- 13. Molander, G.A.; Hahn, G., J. Org. Chem., 51, 1135 (1986).
- 14. Data of 4: $[\delta]_{20}^{20} = 8.05^{\circ}$ (c 2.34, CHCl₃). $\delta_{\rm H}(300$ MHz, CDCl₃): 0.75—1.60(m, 30H), 1.87—1.90(m, 1H), 2.04—2.06(m, H), 2.25—2.45(m, 1H), 3.38—3.45 (m, 1H), 3.50—3.62(m, 1H), 3.85—3.92 (m, 2H), 5.01—5.07(m, 2H), 5.76(m, 1H). EIMS m/z: 325 (M⁺ CH₃), 323, 157, 143, 101, 97. Anal. C₂₁H₄₀O₃. Calcd.: C, 74.07; H, 11.84, Found: C, 73.71; H, 11.87.

(E20004099 JIANG, X.H.; LING, J.)